In situ production of crenarchaeol in two california hot springs.

نویسندگان

  • Angela Pitcher
  • Stefan Schouten
  • Jaap S Sinninghe Damsté
چکیده

Crenarchaeol, a membrane-spanning glycerol dialkyl glycerol tetraether (GDGT) containing a cyclohexane moiety in addition to four cyclopentane moieties, was originally hypothesized to be synthesized exclusively by the mesophilic Crenarchaeota. Recent studies reporting the occurrence of crenarchaeol in hot springs and as a membrane constituent of the recently isolated thermophilic crenarchaeote "Candidatus Nitrosocaldus yellowstonii," however, have raised questions regarding its taxonomic distribution and function. To determine whether crenarchaeol in hot springs is indeed synthesized by members of the Archaea in situ or is of allochthonous origin, we quantified crenarchaeol present in the form of both intact polar lipids (IPLs) and core lipids in sediments of two California hot springs and in nearby soils. IPL-derived crenarchaeol (IPL-crenarchaeol) was found in both hot springs and soils, suggesting in situ production of this GDGT over a wide temperature range (12 degrees C to 89 degrees C). Quantification of archaeal amoA gene abundance by quantitative PCR showed a good correspondence with IPL-crenarchaeol, suggesting that it was indeed derived from living cells and that crenarchaeol-synthesizing members of the Archaea in our samples may also be ammonia oxidizers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution.

The isoprenoid lipid crenarchaeol is widespread in hot springs of California and Nevada. Terrestrial and marine data together suggest a maximum relative abundance of crenarchaeol at approximately 40 degrees C. This warm temperature optimum may have facilitated colonization of the ocean by (hyper)thermophilic Archaea and the major marine radiation of Crenarchaeota.

متن کامل

The distribution and abundance of archaeal tetraether lipids in U.S. Great Basin hot springs

Isoprenoidal glycerol dialkyl glycerol tetraethers (iGDGTs) are core membrane lipids of many archaea that enhance the integrity of cytoplasmic membranes in extreme environments. We examined the iGDGT profiles and corresponding aqueous geochemistry in 40 hot spring sediment and microbial mat samples from the U.S. Great Basin with temperatures ranging from 31 to 95°C and pH ranging from 6.8 to 10...

متن کامل

Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs.

Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Cr...

متن کامل

Nonmarine crenarchaeol in Nevada hot springs.

Glycerol dialkyl glycerol tetraethers (GDGTs) are core membrane lipids of the Crenarchaeota. The structurally unusual GDGT crenarchaeol has been proposed as a taxonomically specific biomarker for the marine planktonic group I archaea. It is found ubiquitously in the marine water column and in sediments. In this work, samples of microbial community biomass were obtained from several alkaline and...

متن کامل

Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol.

The widespread occurrence and diversity of ammonia oxidizing Archaea suggests their contribution to the nitrogen cycle is of global significance. Their distribution appeared limited to low- and moderate-temperature environments until the recent finding of a diagnostic membrane lipid, crenarchaeol, in terrestrial hot springs. We report here the cultivation of a thermophilic nitrifier ('Candidatu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 75 13  شماره 

صفحات  -

تاریخ انتشار 2009